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1. Assumptions made in forming a CT image

- If we could directly derive the exact 
attenuating properties of our area of 
interest from our dataset then we would 
have a ‘perfect’ image

- It is the (necessary) assumptions that are 
made which lead to all misrepresentations 
of the true situation (artefacts)



1. Assumptions made in forming a CT image

Ideal situation
Primary Assumptions

-Point source and 
uniform orthogonal 
attenuation

-No Energy Dependence

-Perfect Source and 
Detector Statistics

Energy independent, 
perfect beam with no 
variation in attenuation 
orthogonal to the beam



Primary Assumptions

-Point source and 
uniform orthogonal 
attenuation

-No Energy Dependence

-Perfect Source and 
Detector Statistics

1. Assumptions made in forming a CT image

Finite Beam

Finite Source

Finite Detector



1. Assumptions made in forming a CT image

Primary Assumptions

-Infinitesimal Line and 
detector

-No Energy Dependence

-Perfect Source and 
Detector Statistics

Energy Dependence

80kV spectrum with 2.5mm Al filter produced using Report 78 
Spectrum Processor © IPEM 1997

Spectrum of energies, 
each attenuates 
differently



1. Assumptions made in forming a CT image

Primary Assumptions

-Point source and 
uniform orthogonal 
attenuation

-No Energy Dependence

-Perfect Source and 
Detector Statistics

The emission of X-Ray photons and the detection of 
these in the detector is considered to be governed 
by Poisson statistics

As the average source intensity is much greater than 
the average detector intensity it is detector statistics 
which are the most relevant
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1. Assumptions made in forming a CT image

Result

Every one of the mentioned assumptions leads to 
a certain type of artefact



2. Artefacts arising from these assumptions

Detector statistics – Noise and photon starvation

•General uncertainty in scan leads to random 
statistical fluctuations (noise)

•Where individual projections have passed through 
areas of high attenuation the uncertainty in the 
calculated attenuation becomes very high and 
leads to streaks emanating from the object



2. Artefacts arising from these assumptions

- Low energy components are absorbed preferentially, 
especially in high Z materials where the photoelectric 
effect is dominant

- Low energy spectrum absorbed to a point where it can 
provide no contrast

- Reduction of contrast and measured attenuation in 
projections that pass through high Z, dense objects.

Energy Dependence – Beam hardening



2. Artefacts arising from these assumptions

- Attenuation is a non-linear process (exponential)
- Measured intensities are averaged across the detector and therefore 

averaged over several beam paths

- This means that in beams where the attenuation varies significantly, 
there could be a misrepresentation of the data.

Finite beam – Partial volume effects
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2. Artefacts arising from these assumptions

Beam starvation/Beam Hardening streaks caused by a pacemaker 



3. Ways of reducing or eliminating these 
assumptions (advanced CT methods)

Dual Energy - background
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3. Ways of reducing or eliminating these 
assumptions (advanced CT methods)

Dual Energy - background

( ) ccpp aaEyx µµµ +=;,

Photoelectric coefficient, this is the energy 
independent photoelectric coefficient unique to 
each material and density

Photoelectric base, this is the photoelectric 
energy dependent function, it is independent of 
material
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Compton coefficient, this is the energy 
independent Compton coefficient unique to 
each material and density

Compton base, this is the Compton energy 
dependent function, it is independent of 
material

Klein Nishina



3. Ways of reducing or eliminating these 
assumptions (advanced CT methods)

Dual Energy - background

• Photoelectric and Compton terms replaced 
by Iodine and Water to allow calibration of the 
scanner (require knowledge of energy 
spectrum)

• Now have theoretically energy independent 
information allowing simulation of any energy



3. Ways of reducing or eliminating these 
assumptions (advanced CT methods)

Dual energy - Application

As the energy dependence has been theoretically 
removed entirely there should be no beam 
hardening artefacts at all

Other effects on metal artefacts are not obvious. 



3. Ways of reducing or eliminating these 
assumptions (advanced CT methods)

Iterative techniques

ASIR (Adaptive Statistical Iterative 
Reconstruction) simulates system statistics 
by weighting the projections

VEO is a form of model based iterative 
reconstruction and models the finite source 
and detector. 



3. Ways of reducing or eliminating these 
assumptions (advanced CT methods)

• Greater number of projections by altering 
source position (focal spot)

• Potentially improved resolution

HD scanning



3. Ways of reducing or eliminating these 
assumptions (advanced CT methods)

Specifically designed algorithms

Most of these use interpolative techniques in 
the sinogram, some use iterative techniques

All algorithms essentially use information from 
projections that do not pass through metal to 
correct ones that do



4. Experimental design



4. Experimental Design

Method

• Scanned each metal object in turn in the 
phantom using iodine/water mixes to simulate 
different contrasts

• Scanned at 120kVp and 140kVp with HD mode 
on and off, and reconstructed with ASIR and 
VEO (not available for HD)

• Also scanned in dual energy mode and 
reconstructed at four different keVs



5. Results

Results

140keV GSI

FBP 140kV100keV GSI

VEO 140kV

FBP HD 140kV



5. Results

MARS

A 70keV reconstruction of a slice through a Hip Prosthesis with (left) and 
without (right) MARS 



5. Results

MARS

A 70keV reconstruction of a slice through a stent with (left) and without 
(right) MARS 



5. Results

Results – ROI analysis

-Used IQ works to allow 
reproducible processing of many 
slices

-Took standard deviation 
between the means of the 7 
region of interest

-Used contrast to noise ratio of 
two small holes to large top hole



5. Results
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5. Results
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5. Results

Stent

The average standard deviation 
across the seven regions of interest 
for the different modalities, the 
uncertainty is represented by the 
standard deviation of the slices

The average standard deviation 
between mean Hounsfield number in 
the Seven regions of interest, the 
uncertainty is represented by the 
standard deviation of the slices 
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5. Results
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6. Discussion and future work

Discussion

• GSI with MARS appeared to be the most 
effective of those methodologies tested 
with VEO being the second

• GSI with MARS can cause unusual 
artefacts in rare situations

• The ability to see different contrasts is 
affected by choice of keV



6. Discussion and future work

• With these in mind, GSI with MARS has potential for 
situations where metal objects would otherwise render 
the image undiagnostic

• It would be prudent to view the image at several different 
keV settings to ensure the full range of contrasts is 
represented

• It would be prudent to view the images both with and 
without MARS applied to check no unusual artefacts 
have been created

• If GSI is used consultants will need to adapt to the 
different kind of information available

Discussion



6. Discussion and future work

Future Work

• An improved way to compare algorithms 
(ROI method crude)

• Compare to metal deletion algorithms that 
use one spectrum

• Evaluate other dual energy systems, 
particularly dual tube systems



Last page!

Thank you very much for listening, are there 
any questions?
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